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Functions, Graphs,
and Models 1

René Descartes (1596–1650)

The seventeenth-cen-
tury French scholar
René Descartes is

perhaps better remembered
today as a philosopher than
as a mathematician. But
most of us are familiar
with the “Cartesian plane”
in which the location of a
point P is specified by its
coordinates (x, y).

As a schoolboy
Descartes was often per-
mitted to sleep late because

of allegedly poor health. He claimed that he always
thought most clearly about philosophy, science, and math-
ematics while he was lying comfortably in bed on cold
mornings. After graduating from college, where he stud-
ied law (apparently with little enthusiasm), Descartes trav-
eled with various armies for a number of years, but more
as a gentleman soldier than as a professional military man.

In 1637, after finally settling down (in Holland),
Descartes published his famous philosophical treatise Dis-
course on the Method (of Reasoning Well and Seeking
Truth in the Sciences). One of three appendices to this
work sets forth his new “analytic” approach to geometry.
His principal idea (published almost simultaneously by his
countryman Pierre de Fermat) was the correspondence be-
tween an equation and its graph, generally a curve in the
plane. The equation could be used to study the curve and
vice versa.

Suppose that we want to solve the equation
f (x) = 0. Its solutions are the intersection points of the
graph of y = f (x) with the x-axis, so an accurate picture
of the curve shows the number and approximate locations
of the solutions of the equation. For instance, the graph

y = x3 − 3x2 + 1

has three x-intercepts, showing that the equation

x3 − 3x2 + 1 = 0

has three real solutions—one between −1 and 0, one
between 0 and 1, and one between 2 and 3. A mod-
ern graphing calculator or computer program can approx-
imate these solutions more accurately by magnifying the
regions in which they are located. For instance, the mag-
nified center region shows that the corresponding solution
is x ≈ 0.65.
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2 CHAPTER 1 Functions, Graphs, and Models

1.1 FUNCTIONS AND MATHEMATICAL MODELING

Calculus is one of the supreme accomplishments of the human intellect. This math-
ematical discipline stems largely from the seventeenth-century investigations of Isaac
Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716). Yet some of its
ideas date back to the time of Archimedes (287–212 B.C.) and originated in cultures
as diverse as those of Greece, Egypt, Babylonia, India, China, and Japan. Many of the
scientific discoveries that have shaped our civilization during the past three centuries
would have been impossible without the use of calculus.

The principal objective of calculus is the analysis of problems of change (of mo-
tion, for example) and of content (the computation of area and volume, for instance).
These problems are fundamental because we live in a world of ceaseless change, filled
with bodies in motion and phenomena of ebb and flow. Consequently, calculus remains
a vibrant subject, and today this body of conceptual understanding and computational
technique continues to serve as the principal quantitative language of science and tech-
nology.

Functions
Most applications of calculus involve the use of real numbers or variables to describe
changing quantities. The key to the mathematical analysis of a geometric or scientific
situation is typically the recognition of relationships among the variables that describe
the situation. Such a relationship may be a formula that expresses one variable as a
function of another. For example:

• The area A of a circle of radius r is given by A = πr2 (Fig. 1.1.1). The volume
V and surface area S of a sphere of radius r are given by

r

FIGURE 1.1.1 Circle: area
A = πr2, circumference C = 2πr .

V = 4
3πr3 and S = 4πr2,

respectively (Fig. 1.1.2).

r

FIGURE 1.1.2 Sphere: volume
V = 4

3 πr3, surface area S = 4πr2.

• After t seconds (s) a body that has been dropped from rest has fallen a distance

s = 1
2 gt2

feet (ft) and has speed v = gt feet per second (ft/s), where g ≈ 32 ft/s2 is
gravitational acceleration.

• The volume V (in liters, L) of 3 grams (g) of carbon dioxide at 27◦C is given in
terms of its pressure p in atmospheres (atm) by V = 1.68/p.

DEFINITION Function
A real-valued function f defined on a set D of real numbers is a rule that assigns
to each number x in D exactly one real number, denoted by f (x).

The set D of all numbers for which f (x) is defined is called the domain (or
domain of definition) of the function f . The number f (x), read “ f of x ,” is called the
value of the function f at the number (or point) x . The set of all values y = f (x) is
called the range of f . That is, the range of f is the set

{y : y = f (x) for some x in D}.
In this section we will be concerned more with the domain of a function than with its
range.

EXAMPLE 1 The squaring function defined by

f (x) = x2

assigns to each real number x its square x2. Because every real number can be squared,
the domain of f is the set R of all real numbers. But only nonnegative numbers are
squares. Moreover, if a � 0, then a = (

√
a)2 = f (

√
a), so a is a square. Hence

2



Functions and Mathematical Modeling SECTION 1.1 3

the range of the squaring function f is the set {y : y � 0} of all nonnegative real
numbers. ◗

Functions can be described in various ways. A symbolic description of the func-
tion f is provided by a formula that specifies how to compute the number f (x) in terms
of the number x . Thus the symbol f ( ) may be regarded as an operation that is to be
performed whenever a number or expression is inserted between the parentheses.

EXAMPLE 2 The formula

f (x) = x2 + x − 3 (1)

defines a function f whose domain is the entire real line R. Some typical values of f
are f (−2) = −1, f (0) = −3, and f (3) = 9. Some other values of the function f are

f (4) = 42 + 4 − 3 = 17,

f (c) = c2 + c − 3,

f (2 + h) = (2 + h)2 + (2 + h) − 3

= (4 + 4h + h2) + (2 + h) − 3 = h2 + 5h + 3, and

f (−t2) = (−t2)2 + (−t2) − 3 = t4 − t2 − 3. ◗

When we describe the function f by writing a formula y = f (x), we call x the
independent variable and y the dependent variable because the value of y depends—
through f —upon the choice of x . As the independent variable x changes, or varies,
then so does the dependent variable y. The way that y varies is determined by the rule
of the function f . For example, if f is the function of Eq. (1), then y = −1 when
x = −2, y = −3 when x = 0, and y = 9 when x = 3.

You may find it useful to visualize the dependence of the value y = f (x) on x by
thinking of the function f as a kind of machine that accepts as input a number x and
then produces as output the number f (x), perhaps displayed or printed (Fig. 1.1.3).

One such machine is the square root key of a simple pocket calculator. When
a nonnegative number x is entered and this key is pressed, the calculator displays (an
approximation to) the number

√
x . Note that the domain of this square root function

f (x) = √
x is the set [0, +∞) of all nonnegative real numbers, because no negative

number has a real square root. The range of f is also the set of all nonnegative real
numbers, because the symbol

√
x always denotes the nonnegative square root of x . The

f (x)

f

x

FIGURE 1.1.3 A “function
machine.”

calculator illustrates its “knowledge” of the domain by displaying an error message if
we ask it to calculate the square root of a negative number (or perhaps a complex
number, if it’s a more sophisticated calculator).

EXAMPLE 3 Not every function has a rule expressible as a simple one-part formula
such as f (x) = √

x . For instance, if we write

h(x) =
�

x2 if x � 0,√−x if x < 0,

then we have defined a perfectly good function with domain R. Some of its values are
h(−4) = 2, h(0) = 0, and h(2) = 4. By contrast, the function g in Example 4 is
defined initially by means of a verbal description rather than by means of formulas.

◗

EXAMPLE 4 For each real number x , let g(x) denote the greatest integer that is less
than or equal to x . For instance, g(2.5) = 2, g(0) = 0, g(−3.5) = −4, and g(π) = 3.
If n is an integer, then g(x) = n for every number x such that n � x < n + 1. This
function g is called the greatest integer function and is often denoted by

g(x) = [[x]].
3



4 CHAPTER 1 Functions, Graphs, and Models

Thus [[2.5]] = 2, [[−3.5]] = −4, and [[π ]] = 3. Note that although [[x]] is defined
for all x , the range of the greatest integer function is not all of R, but the set Z of all
integers. ◗

The name of a function need not be a single letter such as f or g. For instance,
think of the trigonometric functions sin(x) and cos(x) with the names sin and cos.

EXAMPLE 5 Another descriptive name for the greatest integer function of Exam-
ple 4 is

FLOOR(x) = [[x]]. (2)

(We think of the integer n as the “floor” beneath the real numbers lying between n and
n + 1.) Similarly, we may use ROUND(x) to name the familiar function that “rounds
off” the real number x to the nearest integer n, except that ROUND(x) = n + 1 if
x = n + 1

2 (so we “round upward” in case of ambiguity). Round off enough different
numbers to convince yourself that

ROUND(x) = FLOOR
�
x + 1

2

�
(3)

for all x .
Closely related to the FLOOR and ROUND functions is the “ceiling function” used

by the U.S. Postal Service; CEILING(x) denotes the least integer that is not less than
the number x . In 2006 the postage rate for a first-class letter was 39/c for the first ounce
and 24/c for each additional ounce or fraction thereof. For a letter weighing w > 0
ounces, the number of “additional ounces” involved is CEILING(w)−1. Therefore the
postage s(w) due on this letter is given by

s(w) = 39 + 24 · [CEILING(w) − 1] = 15 + 24 · CEILING(w). ◗

Domains and Intervals
The function f and the value or expression f (x) are different in the same sense that a
machine and its output are different. Nevertheless, it is common to use an expression
like “the function f (x) = x2” to define a function merely by writing its formula. In
this situation the domain of the function is not specified. Then, by convention, the
domain of the function f is the set of all real numbers x for which the expression
f (x) makes sense and produces a real number y. For instance, the domain of the
function h(x) = 1/x is the set of all nonzero real numbers (because 1/x is defined
precisely when x �= 0).

(−∞, 2)

(−1, 1]

[0, 1.5)

[−1, 2]

(1, 3)
An open interval

A closed interval

A half-open interval

A half-open interval

An unbounded interval

An unbounded interval

1
2

[ , ∞)

FIGURE 1.1.4 Some examples of intervals of real
numbers.

Domains of functions frequently are described in terms of intervals of real num-
bers (Fig. 1.1.4). (Interval notation is reviewed in Appendix A.) Recall that a closed
interval [a, b] contains both its endpoints x = a and x = b, whereas the open inter-
val (a, b) contains neither endpoint. Each of the half-open intervals [a, b) and (a, b]
contains exactly one of its two endpoints. The unbounded interval [a, ∞) contains
its endpoint x = a, whereas (−∞, a) does not. The previously mentioned domain of
h(x) = 1/x is the union of the unbounded intervals (−∞, 0) and (0, ∞).

4



Functions and Mathematical Modeling SECTION 1.1 5

EXAMPLE 6 Find the domain of the function g(x) = 1

2x + 4
.

Solution Division by zero is not allowed, so the value g(x) is defined precisely when
2x + 4 �= 0. This is true when 2x �= −4, and thus when x �= −2. Hence the domain
of g is the set {x : x �= 2}, which is the union of the two unbounded open intervals
(−∞, −2) and (−2, ∞), shown in Fig. 1.1.5. ◗

(−∞, −2) (−2, ∞)

−2 0

FIGURE 1.1.5 The domain of
g(x) = 1/(2x + 4) is the union of
two unbounded open intervals.

EXAMPLE 7 Find the domain of h(x) = 1√
2x + 4

.

Solution Now it is necessary not only that the quantity 2x+4 be nonzero, but also that
it be positive, in order that the square root

√
2x + 4 is defined. But 2x + 4 > 0 when

2x > −4, and thus when x > −2. Hence the domain of h is the single unbounded
open interval (−2, ∞). ◗

Mathematical Modeling
The investigation of an applied problem often hinges on defining a function that cap-
tures the essence of a geometrical or physical situation. Examples 8 and 9 illustrate
this process.

EXAMPLE 8 A rectangular box with a square base has volume 125. Express its total

x
x

y

FIGURE 1.1.6 The box of
Example 8.

surface area A as a function of the edge length x of its base.

Solution The first step is to draw a sketch and to label the relevant dimensions. Fig-
ure 1.1.6 shows a rectangular box with square base of edge length x and with height y.
We are given that the volume of the box is

V = x2 y = 125. (4)

Both the top and the bottom of the box have area x2 and each of its four vertical sides
has area xy, so its total surface area is

A = 2x2 + 4xy. (5)

But this is a formula for A in terms of the two variables x and y rather than a function
of the single variable x . To eliminate y and thereby obtain A in terms of x alone, we
solve Eq. (4) for y = 125/x2 and then substitute this result in Eq. (5) to obtain

A = 2x2 + 4x · 125

x2
= 2x2 + 500

x
.

Thus the surface area is given as a function of the edge length x by

A(x) = 2x2 + 500

x
, 0 < x < +∞. (6)

It is necessary to specify the domain because negative values of x make sense in the
formula in (5) but do not belong in the domain of the function A. Because every x > 0
determines such a box, the domain does, in fact, include all positive real numbers.

◗

COMMENT In Example 8 our goal was to express the dependent variable A as a func-
tion of the independent variable x . Initially, the geometric situation provided us instead
with

1. The formula in Eq. (5) expressing A in terms of both x and the additional variable
y, and

2. The relation in Eq. (4) between x and y, which we used to eliminate y and
thereby express A as a function of x alone.

We will see that this is a common pattern in many different applied problems, such as
the one that follows.

5



6 CHAPTER 1 Functions, Graphs, and Models

The Animal Pen Problem You must build a rectangular holding pen for animals. To
save material, you will use an existing wall as one of its four sides. The fence for
the other three sides costs $5/ft, and you must spend $1/ft to paint the portion of the
wall that forms the fourth side of the pen. If you have a total of $180 to spend, what
dimensions will maximize the area of the pen you can build?

Figure 1.1.7 shows the animal pen and its dimensions x and y, along with thex

$5/ft

y $5/ft y$5/ft

$1/ft
x Wall

FIGURE 1.1.7 The animal pen.

cost per foot of each of its four sides. When we are confronted with a verbally stated
applied problem such as this, our first question is, How on earth do we get started on
it? The function concept is the key to getting a handle on such a situation. If we can
express the quantity to be maximized—the dependent variable—as a function of some
independent variable, then we have something tangible to do: Find the maximum value
attained by the function. Geometrically, what is the highest point on that function’s
graph?

EXAMPLE 9 In connection with the animal pen problem, express the area A of the
pen as a function of the length x of its wall side.

Solution The area A of the rectangular pen of length x and width y is

A = xy. (7)

When we multiply the length of each side in Fig. 1.1.7 by its cost per foot and then add
the results, we find that the total cost C of the pen is

C = x + 5y + 5x + 5y = 6x + 10y.

So
6x + 10y = 180, (8)

because we are given C = 180. Choosing x to be the independent variable, we use
the relation in Eq. (8) to eliminate the additional variable y from the area formula in
Eq. (7). We solve Eq. (8) for y and substitute the result

y = 1
10 (180 − 6x) = 3

5 (30 − x) (9)

in Eq. (7). Thus we obtain the desired function

A(x) = 3
5 (30x − x2)

that expresses the area A as a function of the length x .
In addition to this formula for the function A, we must also specify its domain.

Only if x > 0 will actual rectangles be produced, but we find it convenient to include
the value x = 0 as well. This value of x corresponds to a “degenerate rectangle” of
base length zero and height

y = 3
5 · 30 = 18,

a consequence of Eq. (9). For similar reasons, we have the restriction y � 0. Because

y = 3
5 (30 − x),

it follows that x � 30. Thus the complete definition of the area function is

A(x) = 3
5 (30x − x2), 0 � x � 30. (10)

◗

COMMENT The domain of a function is a necessary part of its definition, and for
each function we must specify the domain of values of the independent variable. In
applications, we use the values of the independent variable that are relevant to the
problem at hand.

6



Functions and Mathematical Modeling SECTION 1.1 7

Example 9 illustrates an important part of the solution of a typical applied
problem—the formulation of a mathematical model of the physical situation under
study. The area function A(x) defined in (10) provides a mathematical model of the
animal pen problem. The shape of the optimal animal pen can be determined by finding
the maximum value attained by the function A on its domain of definition.

Numerical Investigation
Armed with the result of Example 9, we might attack the animal pen problem by calcu-
lating a table of values of the area function A(x) in Eq. (10). Such a table is shown in
Fig. 1.1.8. The data in this table suggest strongly that the maximum area is A = 135 ft2,
attained with side length x = 15 ft, in which case Eq. (9) yields y = 9 ft. This conjec-
ture appears to be corroborated by the more refined data shown in Fig. 1.1.9.

Thus it seems that the animal pen with maximal area (costing $180) is x = 15 ft
long and y = 9 ft wide. The tables in Figs. 1.1.8 and 1.1.9 show only integral values
of x , however, and it is quite possible that the length x of the pen of maximal area is

x A(x)

0 0
5 75

10 120
15 135←
20 120
25 75
30 0

FIGURE 1.1.8 Area A(x) of a pen
with side of length x .

not an integer. Consequently, numerical tables alone do not settle the matter. A new
mathematical idea is needed in order to prove that A(15) = 135 is the maximum value
of

A(x) = 3
5 (30x − x2), 0 � x � 30

for all x in its domain. We attack this problem again in Section 1.2.

Tabulation of Functions
Many scientific and graphing calculators allow the user to program a given function for
repeated evaluation, and thereby to painlessly compute tables like those in Figs. 1.1.8
and 1.1.9. For instance, Figs. 1.1.10 and 1.1.11 show displays of a calculator prepared
to calculate values of the dependent variable

y1 = A(x) = (3/5)(30x − x2),

and Fig. 1.1.12 shows the calculator’s resulting version of the table in Fig. 1.1.9.
The use of a calculator or computer to tabulate values of a function is a simple

technique with surprisingly many applications. Here we illustrate a method of solving
approximately an equation of the form f (x) = 0 by repeated tabulation of values f (x)

of the function f .

x A(x)

10 120
11 125.4
12 129.6
13 132.6
14 134.4
15 135 ←
16 134.4
17 132.6
18 129.6
19 125.4
20 120

FIGURE 1.1.9 Further indication
that x = 15 yields maximal area
A = 135.

As a specific example, suppose that we ask what value of x in Eq. (10) yields an
animal pen of area A = 100. Then we need to solve the equation

A(x) = 3
5 (30x − x2) = 100,

which is equivalent to the equation

f (x) = 3
5 (30x − x2) − 100 = 0. (11)

This is a quadratic equation that could be solved using the quadratic formula of basic
algebra, but we want to take a more direct, numerical approach. The reason is that the

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.10 A calculator
programmed to evaluate
A(x) = (3/5)(30x − x2).

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.11 The table setup.

TEXAS INSTRUMENTS TI-83tt

FIGURE 1.1.12 The resulting table.

7



8 CHAPTER 1 Functions, Graphs, and Models

numerical approach is applicable even when no simple formula (such as the quadratic
formula) is available.

The data in Fig. 1.1.8 suggest that one value of x for which A(x) = 100 lies
somewhere between x = 5 and x = 10 and that a second such value lies between
x = 20 and x = 25. Indeed, substitution in Eq. (11) yields

f (5) = −25 < 0 and f (10) = 20 > 0.

The fact that f (x) is negative at one endpoint of the interval [5, 10] but positive at the
other endpoint suggests that f (x) is zero somewhere between x = 5 and x = 10.

To see where, we tabulate values of f (x) on [5, 10]. In the table of Fig. 1.1.13
we see that f (7) < 0 and f (8) > 0, so we focus next on the interval [7, 8]. Tabu-
lating f (x) on [7, 8] gives the table of Fig. 1.1.14, where we see that f (7.3) < 0 and
f (7.4) > 0.

We therefore tabulate f (x) once more, this time on the interval [7.3, 7.4]. In
Fig. 1.1.15 we see that

f (7.36) ≈ −0.02 and f (7.37) ≈ 0.07.

Because f (7.36) is considerably closer to zero than is f (7.37), we conclude that the
desired solution of Eq. (11) is given approximately by x ≈ 7.36, accurate to two dec-
imal places. If greater accuracy were needed, we could continue to tabulate f (x) on
smaller and smaller intervals.

If we were to begin with the interval [20, 25] and proceed similarly, we would
find the second value x ≈ 22.64 such that f (x) = 0. (You should do this for practice.)

Finally, let’s calculate the corresponding values of the width y of the animal pen
such that A = xy = 100:

• If x ≈ 7.36, then y ≈ 13.59.
• If x ≈ 22.64, then y ≈ 4.42.

Thus, under the cost constraint of the animal pen problem, we can construct either a
7.36-ft by 13.59-ft or a 22.64-ft by 4.42-ft rectangle, both of area 100 ft2.

The layout of Figs. 1.1.13 through 1.1.15 suggests the idea of repeated tabulation
as a process of successive numerical magnification. This method of repeated tabulation
can be applied to a wide range of equations of the form f (x) = 0. If the interval [a, b]
contains a solution and the endpoint values f (a) and f (b) differ in sign, then we can
approximate this solution by tabulating values on successively smaller subintervals.
Problems 57 through 66 and the project at the end of this section are applications of
this concrete numerical method for the approximate solution of equations.

x f (x)

5 �25.0
6 �13.6
7 �3.4
8 5.6
9 13.4

10 20.0

FIGURE 1.1.13 Values of f (x) on
[5, 10].

x f (x)

7.0 �3.400
7.1 �2.446
7.2 �1.504
7.3 �0.574
7.4 0.344
7.5 1.250
7.6 2.144
7.7 3.026
7.8 3.896
7.9 4.754
8.0 5.600

FIGURE 1.1.14 Values of f (x) on [7, 8].

x f (x)

7.30 �0.5740
7.31 �0.4817
7.32 �0.3894
7.33 �0.2973
7.34 �0.2054
7.35 �0.1135
7.36 �0.0218
7.37 0.0699
7.38 0.1614
7.39 0.2527
7.40 0.3440

FIGURE 1.1.15 Values of f (x) on
[7.3, 7.4].

8



Functions and Mathematical Modeling SECTION 1.1 9

1.1 TRUE/FALSE STUDY GUIDE
Use the following true/false items to check your reading and review of this section.
You may consult the hints provided in the answer section.

1. Isaac Newton was born in the 18th century.
2. A function is a rule that assigns to each real number in its domain one and only

one real number.
3. The value of the function f at the number x in its domain is commonly denoted

by f (x).
4. If the domain of the function f is not specified, then it is the set of all real

numbers.
5. The function giving the surface area A as a function of the edge length x of the

box of Example 8 is given by

A(x) = 2x2 + 600

x
, 0 � x < +∞.

6. In the animal pen problem (Example 9), the maximum area is attained when the
length x of the wall side is 18 ft.

7. The interval (a, b) is said to be open because it contains neither of its endpoints
a and b.

8. The domain of f (x) = √
x does not include the number x = −4.

9. The domain of the function A(x) = 3
5 (30x − x2) is the set of all real numbers.

10. There is no good reason why the domain of the animal pen function in Eq. (10)
is restricted to the interval 0 � x � 30.

1.1 CONCEPTS: QUESTIONS AND DISCUSSION
1. Can a function have the same value at two different points? Can it have two

different values at the same point x?
2. Explain the difference between a dependent variable and an independent variable.

A change in one both causes and determines a change in the other. Which one is
the “controlling variable”?

3. What is the difference between an open interval and a closed interval? Is every
interval on the real line either open or closed? Justify your answer.

4. Suppose that S is a set of real numbers. Is there a function whose domain of
definition is precisely the set S? Is there a function defined on the whole real line
whose range is precisely the set S? Is there a function that has the value 1 at each
point of S and the value 0 at each point of the real line R not in S?

5. Figure 1.1.6 shows a box with square base and height y. Which of the following
two formulas would suffice to define the volume V of this box as a function of
y?

(a) V = x2 y; (b) V = y(10 − 2y)2.

Discuss the difference between a formula and a function.
6. In the following table, y is a function of x . Determine whether or not x is a

function of y.

x 0 2 4 6 8 10

y −1 3 8 7 3 −2
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